Graduate Courses
Study of processes and knowledge used to create an engineered product. Topics include design for manufacturing and assembly, materials, and material selection, Lean Manufacturing, and Design of Experiments (DOE) for design and manufacturing.
3
Dimensional analysis and similitude; applications of fluid flow and thermodynamics to the study of turbomachinery. Characteristics and performance of different types of compressors, turbines, and pumps.
3
Methods to identify and prevent failures in design and manufacturing. Topics include: applied fracture mechanics, non-destructive testing, root cause analysis, and forensic engineering case studies.
3
Advanced considerations of stress, strain, and strength are employed for safe and proper design. Theories of failure, design for fatigue, and effects of dynamic loadings represent the current state of the art.
3
Review of theoretical and experimental techniques of strain and stress analysis with emphasis on electrical strain gauges, brittle coatings, grid methods, and photoelasticity techniques. A project is required involving stress analysis of a component/structure utilizing one or more of the above techniques. Fee: $20.
3
Analysis and design necessary to plan and specify equipment for heating, refrigeration, and air conditioning systems. Includes heat transfer analysis of the structure, psychrometric analysis of inside and ventilating air, and thermodynamic and economic analysis of the necessary equipment.
3
Review of the analysis and design of components of thermal systems such as heat exchangers, pumps and blowers, and drive units. Review of computer methods for analyzing systems. At least two design projects applying thermal systems design procedures will be completed.
3
Systems approach to engineering with application to measurement. Time and frequency analysis of first and second order systems. Calibration, data acquisition, analog to digital conversion, filtering, and modulation will be addressed in both theory and experiment.
3
Project oriented course that introduces advanced CAD design, including surfacing as well as rapid prototyping, computer numeric control, and programmable logic controllers. Topics include theory behind these concepts and devices, solid modeling, 3-D model data exchange, slicing and offsetting algorithms, and programming such as numerical control of a mill. Fee: $30.
3
Analysis and prediction of the dynamic behavior and response of mechanical systems. Various types of oscillations and physical properties such as damping and stiffness are explained.
3
Industrial application of noise control criteria, measurements, materials, and design. Vibration control is comprised of source identification, system isolation, and testing. Extensive laboratory program also includes spectral and signal analysis. Fee: $20.
3
Course will cover a variety of biomechanical analysis and instrumentation topics such as skeletal anatomy, ergonomics, and exercise physiology. Methods for measuring and computing force and movement will be covered. Laboratory exercises will be used to demonstrate instrumentation including motion capture, force plates, EMG, ECG, heart rate monitors, accelerometers, and goniometers.
3
Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3