400

CE 400 Environmental Engineering Seminar

An overview of environmental institutions, policies, and regulations.

1

CE 401 Computational Methods in Civil Engineering

Application of computational methods to civil engineering problems. Numerical differentiation and integration. Matrix methods for structural analysis. Solving differential equations with finite difference and Euler and multi-step methods. Analysis of discrete and continuous mechanical systems.

3

Prerequisites

MTH 301, MTH 321, CE 351

CE 404 Construction Engineering

Construction management and planning, management organization, principles and procedures for estimating and bidding of construction projects, construction contracts, contract documents, construction insurance and bonds; labor law, labor relations, and project safety; project planning and scheduling techniques, including CPM, PERT; resource allocations; project control and treatment of uncertainty.

3

Prerequisites

Upper division standing.

CE 416 Traffic Engineering

Introduction to traffic engineering; traffic stream components and characteristics; fundamental principles of traffic flow; studies of traffic speed, volume, travel time, delay, and pedestrian; capacity analysis of freeways, highways, signalized and unsignalized intersections; traffic control devices; traffic signals; traffic accidents and safety; and traffic management.

3

Prerequisites

CE 315

CE 422 Geotechnical Design

Foundations, including footings, piers, and piles, and raft foundations. Permanent retaining structures, mechanically stabilized earth, and soil nailed walls. Temporary shoring of excavations. Slope stability fundamentals.

Prerequisites

CE 321

CE 441 Structural Steel Design

Design of structural steel elements for buildings using the LRFD method. Includes tension members, columns, beams, and beam-columns. Bolted and welded connections.

3

Prerequisites

CE 351

CE 444 Structural Systems Design

Analysis and design of structural units and building systems. Lateral force resistance to wind and seismic forces: diaphragms and lateral resisting frames. Fundamental aspects of steel, reinforced concrete, masonry, and pre-stressed/post-tension design. Introduction to structural detailing and drawings. Owner, Architectural, and MEP coordination and constraints as it relates to structural engineering. Emphasis on the IBC, ASCE loading, ACI and AISC codes.

3

Prerequisites

CE 351

Corequisites

CE 353

CE 451 Structural Analysis II

Analysis of indeterminate structures by slope deflection method; moment distribution method; approximate methods of analysis. Introduction to space structures.
3

Prerequisites

CE 351

CE 452 Earthquake Engineering

Response of structures to seismic loads and ground motion. Response spectra and their application to earthquake analysis of structures. Seismic design criteria and provisions for buildings and other structures. Use of current codes for earthquake resistant design of structures.

3

Prerequisites

CE 321, CE 351, MTH 321

CE 454 Advanced Civil Engineering Graphic Modeling

Exploration of the principles of Building Information Modeling (BIM) used to improve project outcomes by enabling more rapid visualization and simulation as well as optimized collaboration with intelligent, data-rich models.  Fundamentals of BIM modeling with Autodesk Revit software will be introduced.  Extended course project will be required.
3

Prerequisites

CE 201, CE 351, or permission of instructor

Cross Listed Courses

CE 554

CE 456 International Structures

This course will address aspects that contribute to structural designs for the international community. Topics will include:   socio-economic, historical and sustainable factors of building design. Structural analysis using international codes and a global perspective will be emphasized. Guest speakers will be featured.
3

Prerequisites

CE 351

CE 457 GIS & GPS for Civil Engineering

GIS & GPS theory and applications for site planning, civil/environmental design and analysis, and infrastructure management.
3

Prerequisites

CE 201, CE 223, CE 224, or permission of instructor

CE 458 Remote Sensing and Geographic Information Systems

This course investigates environmental applications of multispectral remote sensing (RS) and geographic information systems (GIS). RS topics include sensor systems, digital image processing, and automated information extraction. GIS topics include spatial database management systems, data analysis, and environmental modeling. Emphasis is placed on biological applications including vegetation mapping, habitat identification and field data mapping.
3

Cross Listed Courses

BIO 384, ENV 384

CE 462 Sustainable Design

This course will address aspects that contribute to the design of sustainable facilities and communities. Topics will include: sustainable measures, stormwater management, water use, energy use, appropriate materials, and waste minimization. Guest speakers and field trips will be featured.

3

Prerequisites

Upper division standing.

CE 464 Water Resources Engineering

Study of the hydrologic cycle; rainfall and streamflow measurement and analysis, surface and groundwater occurrence and movement. Prediction of infiltration, evapotranspiration, runoff and unit hydrograph analysis. Flood and drought probability analysis. Introduction to reservoir operation and flood routing.

3

Prerequisites

CE 362 or corequisite.

Corequisites

CE 362 or prerequisite.

CE 465 Open Channel Flow

Students learn how to design lined or rigid boundary ("engineered") channels, unlined or erodible ("natural") channels, weirs, spillways, stilling basins, culverts, and other hydraulic structures. Students will also learn how to determine the water surface profile for gradually varied flow conditions. Principles of hydraulic analysis, including specific energy, momentum, critical depth, and uniform flow, will be applied.
3

Prerequisites

CE 362

Cross Listed Courses

CE 565

CE 466 Water and Wastewater Design

Study of the fundamental concepts required to design and operate processes used for drinking water treatment and distribution and wastewater collection and disposal. Design of physical, chemical, and biological processes for water treatment and wastewater disposal. Design of water supply and wastewater collection infrastructure.

3

Prerequisites

CE 362, CE 367

CE 468 Environmental Engineering Topics

Introduction to the technology used to manage solid and hazardous wastes and remediate sites contaminated with toxic chemicals. Sanitary landfill design, risk assessment, remedial investigations and feasibility studies, fate and transport analysis. Introduction to air pollution modeling and air pollution treatment technologies.

3

Prerequisites

CE 367 or permission of instructor.

CE 483 Civil Engineering Capstone Project I

A major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate standards and multiple realistic constraints. Projects have some combination of the following characteristics: realism, communication, exposure, teamwork, learning, and related opportunities.
3

Prerequisites

EGR 300

CE 484 Civil Engineering Capstone Project II

Continuation of a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate standards and multiple realistic constraints. Projects have some combination of the following characteristics: realism, communication, exposure, teamwork, learning, and related opportunities. Fee: $50

3

Prerequisites

CE 483

CE 490 Directed Study

Selected study or project in civil engineering for upper-division students. Must be arranged between the student and an individual faculty member, and subsequently approved by the dean of engineering. No more than three hours of directed study taken at the University may be used for elective credits to satisfy degree requirements.

Credit arranged.

Prerequisites

Upper division standing.

CE 491 One Time Course Offering

Credit arranged.

Variable

CE 492 Seminar

Credit arranged.

Variable

CE 493 Research

Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3

Prerequisites

Upper division standing.