Graduate Courses

CE 501 Computational Methods in Civil Engineering

Advanced computational methods to solve civil engineering problems. Matrix methods for structural analysis. Numerical differentiation and integration. Solving differential equations with finite difference and Euler and multi-step methods. Analysis of discrete and continuous mechanical systems. Basic knowledge of linear algebra is required.
3

CE 504 Construction Engineering

Principles and procedures used in construction management. Advanced topics in planning, management organization, estimating and bidding of construction projects, construction contracts, contract documents, construction insurance and bonds; labor law, labor relations, and project safety; project planning and scheduling techniques, including CPM, PERT; resource allocations; project control and treatment of uncertainty.

3

CE 516 Traffic Engineering

Advanced topics in traffic engineering; traffic stream components and characteristics; detailed principles of traffic flow; studies of traffic speed, volume, travel time, delay, and pedestrian; capacity analysis of freeways, highways, signalized and unsignalized intersections; traffic control devices; traffic signals; traffic accidents and safety; and traffic management.

3

CE 522 Geotechnical Design

Study of permanent retaining structures, mechanically stabilized earth, and soil nailed walls. Foundations, including footings, piers, piles, and raft foundations. Temporary shoring of excavations. Advanced slope stability fundamentals. Design aspects culminate in an engineering design report. Knowledge of structural analysis and basic geotechnical engineering is required.
3

CE 541 Structural Steel Design

Advanced topics pertaining to design of structural steel elements for buildings using the LRFD method. Topics include tension members, columns, beams, beam-columns, and bolted and welded connections. Design aspects culminate in an engineering design report. Knowledge of structural analysis is required.
3

CE 544 Structural Systems Design

Analysis and design of structural units and building systems. Lateral force resistance to wind and seismic forces: diaphragms and lateral resisting frames. Fundamental aspects of steel, reinforced concrete, masonry, and pre-stressed/post-tension design. Introduction to structural detailing and drawings. Owner, Architectural, and MEP coordination and constraints as it relates to structural engineering. Emphasis on IBC, ASCE loading, ACI and AISC codes.
3

CE 551 Structural Analysis II

Analysis of indeterminate structures by slope deflection method; moment distribution method; approximate methods of analysis. Introduction to space structures. Special report is required.
3

CE 552 Earthquake Engineering

Response of structures to seismic loads and ground motion. Response spectra and their application to earthquake analysis of structures. Seismic design criteria and provisions for buildings and other structures. Use of current codes for earthquake resistant design of structures. Special report required.
3

CE 554 Advanced Civil Engineering Graphic Modeling

Exploration of the advanced principles of Building Information Modeling (BIM) used to improve project outcomes by enabling more rapid visualization and simulation as well as optimized collaboration with intelligent, data-rich models.  Fundamentals of BIM modeling with Autodesk Revit software will be introduced.  Extended course project and research paper will be required.
3

CE 556 International Structures

This course will address aspects that contribute to structural designs for the international community. Topics will include: socioeconomic, historical and sustainable factors of building design. Emphasis on structural analysis using international codes and a global perspective. Guest speakers will be featured. Special report required.
3

CE 557 GIS & GPS for Civil Engineering

Advanced topics in GIS & GPS theory and applications for site planning, civil/environmental design and analysis, and infrastructure management.
3

CE 562 Sustainable Design

This course will address advanced topics involved in the design of sustainable facilities and communities. Topics will include: sustainable measures, stormwater management, water use, energy use, appropriate materials, and waste minimization. Guest speakers and field trips will be featured.  Special project will be required.

3

CE 564 Water Resources Engineering

Advanced study of the hydrologic cycle; rainfall and streamflow measurement and analysis, surface and groundwater occurrence and movement. Prediction of infiltration, evapotranspiration, runoff, and unit hydrograph analysis. Flood and drought probability analysis. Introduction to reservoir operation and flood routing. Design aspects culminate in engineering design reports.

3

CE 565 Open Channel Flow

Advanced design of lined or rigid boundary ("engineered") channels, unlined or erodible ("natural") channels, weirs, spillways, stilling basins, culverts, and other hydraulic structures. Students learn how to determine the water surface profile for gradually varied flow conditions. Principles of hydraulic analysis, including specific energy, momentum, critical depth, and uniform flow, will be applied. Students study advanced topics in open channel flow and complete a special project that will be presented as a lecture.
3

Prerequisites

culverts

Corequisites

including specific energy

Cross Listed Courses

momentum

CE 566 Water and Wastewater Design

Advanced study of the fundamental concepts required to design and operate processes used for drinking water treatment, distribution, and wastewater collection/treatment. Design of physical, chemical, and biological processes for water treatment and wastewater disposal. Design of water supply and wastewater collection infrastructure. Design aspects culminate in engineering design reports. Basic knowledge of environmental and hydraulics recommended. Special report required.

3

CE 568 Environmental Engineering Topics

Introduction to the technology used to manage solid and hazardous wastes and remediate sites contaminated with toxic chemicals. Sanitary landfill design, risk assessment, remedial investigations and feasibility studies, fate and transport analysis. Introduction to air pollution modeling and air pollution treatment technologies. Students complete special project.


3

CE 590 Directed Study

Credit arranged.

Variable

CE 591 One Time Course Offering

Credit arranged.

Variable

CE 592 Seminar

Credit arranged.

Variable

CE 593 Research

Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3

CE 599 Thesis

Credit arranged.

Variable