Graduate Courses
Advanced computational methods to solve civil engineering problems. Matrix methods for structural analysis. Numerical differentiation and integration. Solving differential equations with finite difference and Euler and multi-step methods. Analysis of discrete and continuous mechanical systems. Basic knowledge of linear algebra is required.
3
Principles and procedures used in construction management. Advanced topics in planning, management organization, estimating and bidding of construction projects, construction contracts, contract documents, construction insurance and bonds; labor law, labor relations, and project safety; project planning and scheduling techniques, including CPM, PERT; resource allocations; project control and treatment of uncertainty.
3
Advanced topics in traffic engineering; traffic stream components and characteristics; detailed principles of traffic flow; studies of traffic speed, volume, travel time, delay, and pedestrian; capacity analysis of freeways, highways, signalized and unsignalized intersections; traffic control devices; traffic signals; traffic accidents and safety; and traffic management.
3
Study of permanent retaining structures, mechanically stabilized earth, and soil nailed walls. Foundations, including footings, piers, piles, and raft foundations. Temporary shoring of excavations. Advanced slope stability fundamentals. Design aspects culminate in an engineering design report. Knowledge of structural analysis and basic geotechnical engineering is required.
3
Advanced topics pertaining to design of structural steel elements for buildings using the LRFD method. Topics include tension members, columns, beams, beam-columns, and bolted and welded connections. Design aspects culminate in an engineering design report. Knowledge of structural analysis is required.
3
Analysis and design of structural units and building systems. Lateral force resistance to wind and seismic forces: diaphragms and lateral resisting frames. Fundamental aspects of steel, reinforced concrete, masonry, and pre-stressed/post-tension design. Introduction to structural detailing and drawings. Owner, Architectural, and MEP coordination and constraints as it relates to structural engineering. Emphasis on IBC, ASCE loading, ACI and AISC codes.
3
Analysis of indeterminate structures by slope deflection method; moment distribution method; approximate methods of analysis. Introduction to space structures. Special report is required.
3
Response of structures to seismic loads and ground motion. Response spectra and their application to earthquake analysis of structures. Seismic design criteria and provisions for buildings and other structures. Use of current codes for earthquake resistant design of structures. Special report required.
3
Exploration of the advanced principles of Building Information Modeling (BIM) used to improve project outcomes by enabling more rapid visualization and simulation as well as optimized collaboration with intelligent, data-rich models. Fundamentals of BIM modeling with Autodesk Revit software will be introduced. Extended course project and research paper will be required.
3
This course addresses aspects that contribute to structural designs for the international community. Topics include: socioeconomic, historical and sustainable factors of building design. Emphasis on structural analysis using international codes and a global perspective. Guest speakers are featured. Special report required.
3
This course addresses advanced topics involved in the design of sustainable facilities and communities. Topics include: sustainable measures, stormwater management, water use, energy use, appropriate materials, and waste minimization. Guest speakers and field trips are featured. Special project is required.
3
Advanced study of the hydrologic cycle; rainfall and steam-flow measurement and analysis, surface and groundwater occurrence and movement. Prediction of infiltration, evapotranspiration, runoff, and unit hydrograph analysis. Flood and drought probability analysis. Introduction to reservoir operation and flood routing. Design aspects culminate in engineering design reports. Basic knowledge of hydraulics recommended.
3
Advanced design of lined or rigid boundary channels, unlined or erodible channels, weirs, spillways, stilling basins, culverts & other hydraulic structures. Students analyze gradually varied flow conditions. Hydraulic analysis, including specific energy, momentum, critical depth, and uniform flow. Advanced topics in open channel flow. Complete a special project that will be presented as a lecture. Basic knowledge of hydraulics recommended.
3
Advanced study of the fundamental concepts required to design and operate processes used for drinking water treatment, distribution, and wastewater collection/treatment. Design of physical, chemical, and biological processes for water treatment and wastewater disposal. Design of water supply and wastewater collection infrastructure. Design aspects culminate in engineering design reports. Basic knowledge of environmental and hydraulics recommended. Special report required.
3
Take a peek 'under the hood' at what it takes to deliver large, municipal wetinfrastructure projects in an increasingly complex society. This course will track a real-world project from conception/identification, engineering procurement, preliminary and detailed design, construction and start-up/commissioning. Special project required.
3
Cross Listed Courses
CE 467
Introduction to the technology used to manage solid and hazardous wastes and remediate sites contaminated with toxic chemicals. Sanitary landfill design, risk assessment, remedial investigations and feasibility studies, fate and transport analysis. Introduction to air pollution modeling and air pollution treatment technologies. Students complete special project.
3
Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3