EE - Electrical Engineering
Students work with faculty adviser to complete the first phase of a capstone project.
0
Corequisites
EE 483
Students work with faculty adviser to complete the second phase of a capstone project.
0
Corequisites
EE 484
Introduction to designing digital circuits. Topics include number systems, Boolean algebra, simplification of Boolean functions, design and analysis of combinational and sequential logic circuits, hierarchical design, and simulation of digital circuits. Fee: $125
3
Circuit elements and concepts. Ohm's and Kirchhoff's laws. Simple resistive circuits. Review of matrix algebra. Node voltage method using matrix equations. Superposition. Thevenin and Norton equivalent circuits. Maximum power transfer theorem. Capacitance and inductance. Natural and step response of first- and second-order circuits. Sinusoidal steady-state circuits. PSPICE is incorporated as a simulation software.
3
Prerequisites
MTH 202,
PHY 205 or corequisites.
Corequisites
EE 271,
MTH 202,
PHY 205 or prerequisites.
Introduction to continuous- and discrete-time signals and systems. Continuous- and discrete-time linear time-invariant systems. Convolution. Impulse and step response. Laplace transform. Fourier series and Fourier transform. Sampling. Z transform. MATLAB software is incorporated throughout.
3
Prerequisites
EE 261
Measurement experience with a variety of basic electrical instruments. The student engineer will verify many of the principles of electrical circuit theory. Fee: $50
1
Corequisites
EE 261
Study of ethical and professional responsibilities in the area of electrical engineering. The impact of solutions related to electrical engineering in global, economic, environmental, and societal contexts. Students are expected to develop a career plan and gain awareness regarding the importance of lifelong learning skills.
1
Prerequisites
Prerequisite: junior standing
Lumped vs. distributed electrical circuits. Transient response of lossless transmission lines. Sinusoidal steady-state waves on lossless transmission lines. Smith chart and impedance matching techniques and networks. Review of vector calculus. Maxwell's equations and solution of wave equations. Uniform plane electromagnetic waves in a simple unbounded lossless medium.
3
Prerequisites
EE 261,
MTH 301,
PHY 205
Introduction to digital systems. TTL and CMOS 74-series logic families. Register-transfer level (RTL) combinational and sequential circuit design principles and practices using 74-series devices. Overview of programmable logic device (PLD) architectures. Combinational and sequential circuit designs using a hardware description language. Fee: $75
3
Prerequisites
EE 231
Corequisites
EE 373
Computer systems evolution. Processor to memory interface. Introduction to microcontrollers. Microcontroller instruction set architecture and assembly language programming. Parallel input/output device interfacing. Timers and interrupt handling. UART and Inter-IC (12C) serial communications. Analog-to-digital converter interface. Implementation of a microcontroller-based embedded system. Fee: $75
3
Prerequisites
EE 332 or
CS 333
Basic concepts of electronic circuit analysis and design. Physical operation and modeling of diodes, Bipolar Junction Transistors and MOSFETs. Small-signal analysis of electronic circuits. Amplifier biasing and bias-point stability. Use of SPICE as a design tool.
3
Prerequisites
EE 261
EE 352 is a continuation of EE 351. It includes advanced analog circuit theory, analysis, and simulation using PSPICE. Topics include 1) BJT and MOS transistor amplifiers, 2) frequency response, 3) feedback and, 4) opamp active filters. EE 352 provides the theoretical foundation for the companion electronics laboratory course, EE 371.
3
Prerequisites
EE 351
Corequisites
EE 371
Companion laboratory course to the EE 352 Electronics Circuits II lecture course. Students analyze, assemble, and test various electronic circuits. Students perform rigorous AC and DC measurements using state-of-the-art instrumentation and correlate results to theoretical analysis. Rigorous written reporting of laboratory results is required. Designated as a Writing in the Discipline course. Fee: $50
1
Corequisites
EE 352
Familiarization with the laboratory equipment. Basic gate operations. Combinational logic design using SSI, MSI, and LSI logic devices. Logic design with programmable logic devices. Sequential logic circuits. MSI counters. Designated as a Writing in the Discipline course. Fee: $75
1
Corequisites
EE 332
Introduction to analog and digital communication systems with emphasis on modulation, demodulation, encoding, decoding, and synchronization techniques used in wireless systems. Python is used to simulate communication systems and to write a software defined receiver (SDR) for a real RF signal.
3
Prerequisites
EE 262
Cross Listed Courses
EE 503
Modeling and control of continuous-time control systems. Topics include feedback, transfer functions, responses in the time and frequency domains, stability, and compensation. Applications include manufacturing and robotics.
3
Prerequisites
MTH 321
Introduction to the modeling, design, and operation of modern power generation, transmission, and distribution systems. Topics include complex power, three-phase systems, compensation, and power flow.
3
Prerequisites
EE 261
Study of renewable energy systems including photovoltaic, wind, geothermal systems, biofuels, and tidal energy. Overview of renewable energy credits, sustainability definitions, life cycle assessment, and exergy assessment techniques.
3
Prerequisites
ME 331
Cross Listed Courses
ME 438
Introduction to ASIC (application-specific integrated circuits) design flow. Synthesis of combinational and sequential logic. Synthesis of hardware description language constructs. Post-synthesis design tasks. FPGA (field programmable gate array) architectures. Design prototyping with FPGAs.
3
Prerequisites
EE 435
Introduction to Verilog-based design process. Hierarchical modeling methodology. Basic Verilog language structures for modeling digital hardware functions. Modules and ports. Gate-level modeling. Data flow modeling. Behavioral modeling. Tasks and functions. Useful modeling techniques in digital system design. Component timing and delay modeling. Logic synthesis with Verilog HDL.
3
Prerequisites
EE 332
Introduction to topics in testing of digital systems. Physical circuit failures and fault modeling. Fault simulation and fault coverage. Algorithms for automatic test pattern generation. Introduction to Built-in self test. Testing of sequential circuits. Test application and response processing techniques. Design for testability. Includes an advanced testing project.
3
Prerequisites
EE 332
Cross Listed Courses
EE 536
Processor control unit design techniques. Pipelined data path and control unit design. Cache memory and cache coherency design techniques. Memory management using virtual memory. Case studies of contemporary high-performance computer architectures.
3
Prerequisites
EE 334 or
CS 333
Introduction to digital CMOS VLSI chip design using Tanner's L-EDIT layout software, and PSPICE. Topics include CMOS gate logic design simulation and layout, speed and power considerations, and CMOS VLSI chip design using Standard Cells. Students are required to complete a modest-sized CMOS integrated circuit design project through layout, simulation, and verification.
3
Prerequisites
EE 231
This course is an introduction to functional pre-silicon verification of digital systems. The course will cover verification flow, simulation based verification, virtual platforms, formal verification and FPGA-based emulation.
3
Prerequisites
EE 334
Cross Listed Courses
EE 539
Analysis and design of advanced MOS analog electronic circuits. Topics include advanced MOS semiconductor device models, active loaded amplifiers, operational amplifiers, feedback compensation, and switched-capacitor filters. PSPICE is used as a circuit simulation tool. An introduction to photovoltaics, thermoelectronics, and nanoelectronics is also included.
3
Prerequisites
EE 352
This course covers techniques used to process digital signals in applications such as audio filtering and speech recognition. Topics include analog-to-digital and digital-to-analog conversions, aliasing, quantization, discrete-time signals and systems, discrete-time Fourier transform, Z-transform, and digital filter design. MATLAB is used to demonstrate concepts and to process real signals.
3
Prerequisites
EE 262
Cross Listed Courses
BME 563
Introduction to the hardware and software used in real-time digital signal processing (DSP) systems. Topics include analog-to-digital and digital-to-analog converters, DSP chip architecture, and special software techniques such as frame-based processing, circular buffering, digital filters, and the Fast Fourier Transform. Students will implement real-time DSP systems using C language and will run them on a DSP board.
3
Prerequisites
EE 262,
CS 305
Applications of electrical engineering in recording and modifying neural activity of the brain. Topicsinclude basics of brain imaging techniques such as electroencephalography (EEG), magneticresonance imaging (MRI), and functional magnetic resonance imaging (fMRI). Introduction to treatmentmethods utilizing electric and magnetic fields to alter brain activity such as repetitive transcranialmagnetic stimulation (rTMS).
3
Prerequisites
EE 262
Cross Listed Courses
BME 564
A major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate standards and multiple realistic constraints. Projects have some combination of the following characteristics: realism, communication, exposure, teamwork, learning, and related opportunities.
3
Prerequisites
EGR 351 or
EGR 352 or corequisites,
EGR 300,
EE 334 or
EE 351 or EE 400-level
Corequisites
EGR 351 or
EGR 352 or prerequisites,
EE 083
Continuation of a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate standards and multiple realistic constraints. Projects have some combination of the following characteristics: realism, communication, exposure, teamwork, learning, and related opportunities.
3
Prerequisites
EE 483
Corequisites
EE 084
Selected study or project in electrical engineering for upper-division students. Must be arranged between the student and an individual faculty member and subsequently approved by the dean of engineering. No more than three hours of directed study taken at the University may be used for elective credits to satisfy degree requirements.
Variable
Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3
Prerequisites
Upper division standing.
Introduction to analog and digital communication systems with emphasis on modulation, demodulation, encoding, decoding, and synchronization techniques used in wireless systems. Python is used to simulate communication systems and to write a software defined receiver (SDR) for a real RF signal. Knowledge of signals & systems is required.
3
Modeling and control of continuous-time control systems. Topics include feedback, transfer functions, responses in the time and frequency domains, stability, and compensation. Applications include manufacturing and robotics. Knowledge of Laplace transforms is required. A research paper on a relevant topic of interest is required.
3
Introduction to the modeling, design, and operation of modern power generation, transmission, and distribution systems. Topics include complex power, three-phase systems, compensation, and power flow. Knowledge of basic circuit analysis is required. A research paper on a relevant topic of interest is required.
3
Advanced study of renewable energy systems including photovoltaic, wind, geothermal systems, biofuels, and tidal energy. Study of renewable energy credits, sustainability definitions, life cycle assessment, and exergy assessment techniques.
3
Cross Listed Courses
ME 538
Introduction to ASIC (Application Specific Integrated Circuit) design flow. Synthesis of combinational and sequential circuits. Synthesis of hardware description language constructs. Post-synthesis design tasks. FPGA (Field Programmable Gate Array) architectures. Design prototyping with FPGAs. Advanced topics on ASIC prototyping strategies.
3
Verilog-based design process. Hierarchical modeling methodology. Basic Verilog language structures for modeling digital hardware functions. Modules and ports. Gate level modeling. Dataflow modeling. Behavioral modeling. Tasks and functions. Useful modeling techniques in digital system design. Component timing and delay modeling. Logic synthesis with Verilog HDL. Advanced topics on high-level synthesis and system verification.
3
Introduction to topics in testing of digital systems. Physical circuit failures and fault modeling. Fault simulation and fault coverage. Algorithms for automatic test pattern generation. Introduction to Built-in self test. Testing of sequential circuits. Test application and response processing techniques. Design for testability. Includes an advanced testing project and a research paper.
3
Cross Listed Courses
EE 436
Processor control unit design techniques. Pipelined datapath and control unit design. Cache memory and cache coherency design techniques. Memory management using virtual memory. Case studies of contemporary high-performance computer architectures. Advanced topics on parallel computer architectures.
3
Digital CMOS VLSI chip design using Tanner's L-EDIT layout software, and PSPICE. Topics include CMOS gate logic design simulation and layout, speed and power considerations, and CMOS VLSI chip design using Standard Cells. A modest-sized CMOS integrated circuit design project through layout, simulation, and verification is required. A term paper on future trends in digital CMOS VLSI technology is required.
3
This course is an introduction to functional pre-silicon verification of digital systems. The course will cover verification flow, simulation based verification, virtual platforms, formal verification and FPGA-based emulation. Includes an advanced verification project. Prior knowledge of embedded systems is required.
3
Cross Listed Courses
EE 439
Analysis and design of advanced MOS analog electronic circuits. Advanced MOS semiconductor device models, active loaded amplifiers, operational amplifiers, feedback compensation, and switched-capacitor filters. PSPICE circuit simulation tool. Students design a custom CMOS OpAmp using hand calculations and PSPICE simulations. Introduction to photovoltaics, thermoelectronics, and nanoelectronics is also included. Students write a term paper on future trends in analog MOS technology.
3
Covers techniques used to process digital signals in applications (audio filtering, speech recognition, biomedical signal processing). Topics: analog-to-digital/digital-to-analog conversions, aliasing, quantization, discrete-time signals & systems, discrete-time Fourier transform, Z-transform, digital filter design. MATLAB used to demonstrate concepts and process real signals. Includes an advanced project to explore a digital signal processing system. Prior course in signals and systems recommended.
3
Cross Listed Courses
BME 563
Hardware and software used in real-time digital signal processing systems. Analog-to-digital/digital-to-analog converters, DSP chip architecture, and software techniques including frame-based processing, circular buffering, digital filters, and Fast Fourier Transform. Implementation of real-time DSP systems using C language on a DSP board. Includes a project to explore a DSP system in detail. Recommended prior courses: signals & systems; C-language programming.
3
Faculty-directed student research. Before enrolling, a student must consult with a faculty member to define the project. May be repeated for credit.
1-3